FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Em teorias de campos na rede, campos de férmions experimentam (pelo menos) uma duplicação no número de tipos de partículas, correspondendo a pólos extras no propagador.
Uma rede é um arranjo periódico de vértices. Se nós aplicarmos uma transformada de Fourier a uma rede, o espaço de momentos é um toro com a forma do domínio fundamental da rede recíproca chamado de zona de Brillouin.
Isto significa que se observarmos as soluções de ondas sobre uma rede, o autovalor do operador de férmions em função do momento (vetor de onda) será periódico.
Para um campo bosônico livre, a ação é quadrática e, por isso, os autovalores tem a forma
- ,
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
ou a forma similar onde . Para escalas de momento muito maiores que o espaçamento inverso de rede (i.e. para autovalores próximos de zero) somente os momentos em torno de k=0 são dominantes e nós temos uma única espécie de bóson.
Férmions, por outro lado, são descritos por equações de primeira ordem. Então, poderíamos ter algo que será como
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
pelo menos com uma dimensão espacial, sendo os casos dimensionalmente mais altos são análogos. Se nós observarmos o limite inferior dos autovalores, nós veremos duas regiões diferentes; uma sobre k=0 e a outra sobre k=π/L. Eles comportam-se como dois tipos de partículas. Isto é chamado duplicação de férmion e cada espécie de férmion é chamada um gosto (em analogia ao sabor dos quarks).
Desenvolvimentos[editar | editar código-fonte]
Duplicação de férmion é uma consequência genérica de ações locais e Hamiltonianos. Um meio de se eliminar estes duplicadores indesejáveis foi primeiramente proposto por Wilson.
Um novo termo, o termo de Wilson, é adicionado à ação de férmion e remove os duplicadores (ou melhor, faz os duplicadores infinitamente pesados e então não observáveis). No entanto, a supressão dos duplicadores terá implicações, porque o termo adicional quebra explicitamente uma simetria fundamental da cromodinâmica quântica (QCD), a simetria quiral. Soluções para este problema tem sido buscadas pela introdução de interações de gauge.[1]
Uma maneira de se ver porque esta é uma característica genérica é olhar para os pontos de Fermi do modelo. Genericamente, haverá mais de um ponto de Fermi (um mesmo número, na verdade).
Também encontram-se duas soluções em espaços de uma dimensão, sendo que uma solução é a maneira genérica para três dimensões e a segunda solução elimina a duplicação em qualquer número de dimensões..[2]
O problema da duplicação de férmions ocorre em formulações numéricas da equação de Dirac sobre retículos quando os operadores do primeiro derivativo são substituídos por expressões diferentes. A descrição destes operadores normalmente conduz a soluções não físicas com dois números de onda para uma única energia. A introdução de transformações unitárias com operadores parciais de paridade permitem obter uma nova equação de Dirac a qual pode ser descrita sem o problema da duplicação de férmion.[3]
Propõe-se resolução do problema da duplicação de férmions em teorias de campo discretas baseadas em esfera difusa e seus produtos cartesianos, pela geometria não comutativa.[4]
Em matemática, a transformada de Fourier é uma transformada integral que expressa uma função em termos de funções de base sinusoidal. Existem diversas variações diretamente relacionadas desta transformada, dependendo do tipo de função a transformar. A transformada de Fourier, epônimo a Jean-Baptiste Joseph Fourier,[1] decompõe uma função temporal (um sinal) em frequências, tal como um acorde de um instrumento musical pode ser expresso como a amplitude (ou volume) das suas notas constituintes. A transformada de Fourier de uma função temporal é uma função de valor complexo da frequência, cujo valor absoluto representa a soma das frequências presente na função original e cujo argumento complexo é a fase de deslocamento da base sinusoidal naquela frequência.
A transformada de Fourier é chamada de representação do domínio da frequência do sinal original. O termo transformada de Fourier refere-se à ambas representações do domínio frequência e a operação matemática que associa a representação domínio frequência a uma função temporal. A transformada de Fourier não é limitada a funções temporais, contudo para fins de convenção, o domínio original é comumente referido como domínio do tempo. Para muitas funções de interesse prático, pode-se definir uma operação de reversão: a transformada inversa de Fourier, também chamada de síntese de Fourier, de um domínio de frequência combina as contribuições de todas as frequências diferentes para a reconstituição de uma função temporal original.
Operações lineares aplicadas em um dos domínios(tempo ou frequência) resultam em operações correspondentes no outro domínio, o que, em certas ocasiões, podem ser mais fáceis de efetuar. A operação de diferenciação no domínio do tempo corresponde à multiplicação na frequência, o que torna mais fácil a análise de equações diferenciais no domínio da frequência. Além disso, a convolução no domínio temporal corresponde à multiplicação ordinária no domínio da frequência. Isso significa que qualquer sistema linear que não varia com o tempo, como um filtro aplicado a um sinal, pode ser expressado de maneira relativamente simples como uma operação nas frequências. Após realizar a operação desejada, a transformação do resultado alterna para o domínio do tempo. A Análise harmônica é o estudo sistemático da relação entre os domínios de tempo e frequência, incluindo os tipos de funções ou operações que são mais "simples" em um ou em outro, e possui ligações profundas a muitas áreas da matemática moderna.
Definição[editar | editar código-fonte]
Diversas notações são convencionadas para denotar a transformação de Fourier de uma função . Utilizaremos a seguinte representação:
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A afirmação de que pode ser reconstruída a partir de é conhecida como o teorema da inversão de Fourier e foi introduzido no estudo Analytical Theory of Heat, de Fourier, apesar de que a definição moderna de demonstração teria sido construída muito tempo depois. As funções e são conhecidas como par integral de Fourier.